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NONLINEAR WAVES IN AN ACTIVE-DISSIPATIVE
DISPERSE MEDIUM

N. A. Kudryashov and E. D. Zargaryan UDC §32.546

Nonlinear waves in a medium involving dissipation, dispersion, and enhancement described by the
generalized Kuramoto— Sivashinsky equation are discussed. Analytical solutions of the equation are obtained
in the form of solitary waves. For numerical modeling of the nonlinear waves a difference scheme is
suggested. Interaction of nonlinear waves described by the Kuramoto—Sivashinsky model is considered. It
is shown that for specified values of the problem parameters there is one solitary wave described by the initial
model. The dependences of the velocity and amplitude of this wave on the problem parameters are

determined.

Introduction. One of the common nonlinear models used in describing wave processes is the model based
on the generalized Kuramoto—Sivashinsky equation

U+ uny, + augy, + Buy .+ Yy, =0. 1)

This equation is used to investigate long waves in the flow of a thin liquid layer down an inclined plane {1, 2] and
thermocapillary convection in thin liquid layers [3] and to describe the processes of instability and generation of

turbulence in combustion [4].
In the case f = 0, Eq. (1) is one of the simplest relations describing turbulent processes in an active

dissipative medium, and therefore it has been actively investigated in the last several years [5, 6].

For a > 0, y > 0 the term with the second derivative corresponds to pumping energy into the system, and
the components with the third and fourth derivatives characterize its dispersion and dissipation, respectively.

Below we present some analytical solutions of Eq. (1), a difference scheme for mathematical modeling of
the nonlinear waves described by Eq. (1), and results of mathematical modeling of nonlinear waves.

Analytical Solutions of Eq. (1). Equation (1) cannot be integrated by the method of the inverse scattering
problem since it does not satisfy the Painleve property [7-9 ]; however it has some particular solutions. We introduce
dimensionless variables in Eq. (1), setting

u=avVa/yu, x=Vy/a x, t=(y/a2)tl, o=8/Vay .
Then Eq. (1) acquires the form
U+ uu, Uy Fou et Uy, =0 (2

(the primes at the variables in (2) are omitted).
We note that Eq. (2) is invariant relative to the substitution

Uu—>—u,x>—x,0>—0, 3)

and therefore it will be considered below only for o = 0.
We will seek a solution of Eq. (2) in the form
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u(x, t)=a0Yp+a1Yp_l+...+ap, C))

where Y(x, 1) satisfies the system of equations {10}

vo=- V-5, ®

1
=CY - CY+5(5C+Cp, (6)
and the variables C and S satisfy the consistency condition [10]
S;+ Cppy +2C,S+CS, =0. Q)

With Eq. (5) taken into consideration, after substitution of u = agY” into Eq. (2) we obtain p =3, ap = 120.
Thus, a solution of (2) is sought in the form

u=120Y3+a1Y2+a2Y+a3. (8)

Substituting (8) into (2) and equating coefficients of the same power of Y to zero, we arrive at

a = - 150, 9)
a, = 60S + (16 oY, (10)
a3=—ISSX—SUS+C+7%(7—18—302). (11

Furthermore, we obtain a system of equations in S, C, and o as a parameter:

G+ 38 + 308, + 287 + 2 (16— o)) S ~ %(é‘— 4 887az+11)=0, (12)
Sexe + 308, + 355, +608(16—02)Sx+%82—0[£—2—(2—13—0)] -0, (13)
Sz+Sxxxx+%Sxxx—2SSxx+3o4 (16 — %) S, — 25:+ (C — 0S) S, + 25C, =0, (14)
p
15 o [101lo 225 2
C,+C.C—-1355,,S, + anxS+152[ 64 —39) Sxx—TUSx_
15 (165 2 15 (1991 4 581 2
lSSxS + Ho (H 1) S5+ 18C, S, + 1444 (7078_ ~128° + 17)
2
45 3, 3o (89 2 2 9 2 10
o2 (BT 0 16003 4 97037 2 37398) = 0. (15)
152° | 2 2 2
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TABLE 1. Solutions of System of Equations (17)-(19)

g 0 0 12/V&7 16/VT73 4 4
S —11/38 1/38 -1/94 —1/146 -1/2 1/2

TABLE 2. Analytical Solutions of Eq. (2), £ =k/2(x — Cp

g k Analytical solution
0 vIT/19 C + 15k%tanh (&) (tanh® &) — 9/11)
0 1/v19 C + 15k%tan &) (tan® (&) + 3)
12/V&T 1/Va&T C + 15k3{[tanh ¢) — 1]* + 4}
16/VT3 1/VT3 C + 15K3{tanh (¢)[tanh? &) + 51+ 4 cosh? ()}
4 1 C +4 — 15K°[1 + tan () Jeos® (¢)
4 1 C — 6 + 15k°[1 — tanh (¢) Jcosh? (&)

The last system of equations is overdetermined in the general case; however it is consistent for some classes of
functions. Setting in (12)-(15)

S,=C,=8=C=0, (16)

we obtain the following system of algebraic equations:

2,5 o ¢ 1 (131 4 87 2 _ 17

25 + 153 (16-0) S 722(64“ 8"“1)“0’ )
g 2 3 (2 10\1°
¢ o |2 A4 = 18
4S 0[152 (a 3)] 0, (18)

2

45 3, 30 (89 2 2 9 (2 10

TO’S +1_52(320 +3)S -—50[152 (cr ——3)] S+

49 Eaﬁ_1600304+9703702_77328 =0 (19)

152° | 2 2 2

solutions of which for C = const are given in Table 1. System (5), (6) is transformed to a linear form by the
substitution Y =W¥,/W¥:

20
W, +3w=0, 20)
C, 2
lI’t+C\I’X———21P=O, 21)
which for conditions (16) gives the solution
k k 22
Y(x, 1) = C,exp i(x—Cl) + C, exp —i(x—Ct) , (22)
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Fig. 1. Interaction of solitary wave (27) with a disturbance having the form
u(x) = 15 cosh™3{8(x — 3)} at the initial moment: 1) interaction with the
disturbance; 2) analytical solution without interaction.

where k% = —28; Cy and C3 are arbitrary constants.
Passing from the function W(x, #) in the form (22) to Y = ¥,/W¥, we arrive at the following solution Eq.

(2):

u=120Y - 156Y* + 15 (45 +7—16(16 ~ )| ¥ = 505 + 7% (7 - %302) +C, (23)
where Y = (k/2)tanh {k/2(x — Ct) + ¢g}, C and g are arbitrary constants, and o and S are given in Table 1.
Formula (23) reflects the fact that Eq. (2) is invariant relative to Galilean transformations

(wu,x, ) > u+C,x—-Ct, 1. (24)

Table 2 gives solutions of Eq. (2) for particular values of o and k = —V2 1SS! and ¢g = 0.
From formula (23) we can find the asymptotic form of the solution obtained:

g 13 2 S 2 15 2
722 _2 —— - 25
u—>C+76(7 80) 4 ok 152(16 oYk as x> + o, (25)
where k¥ = V=25. Expression (25) is valid only for § < O from Table I. The other solutions, corresponding to
S > 0 from Table 1, are periodic and, moreover, are singular at £ = +x/2 and, consequently, do not tend to a limit
as x > *oo,

The particular solutions obtained were used to test a numerical algorithm in mathematical modeling of
physical processes described by Eq. (1) for arbitrary parameters a, 3, y.

Numerical Modeling of Nonlinear Waves Described by Eq. (1). For this, use is made of an implicit
difference scheme of the following form with order of approximation O(z) + Ohd:
n+1__ n

u u; 1 n 2 n 2
et g )" — () 1+

n+l n+l ﬂ n+l n+l n+1 n+l

n+l
+uj,_|)+‘£3‘(uj+2 "'2u +1 +2uj_l _uj_2)+

a
+ — (U — 2u; '
25 J+ J j
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Fig. 2. Evolution of a wave specified at 1 = 0 by the expression u(x) = A
cosh™2 (kx/2){1 — tanh (kx/2)}:a) A=12, k=1;b) A= 15, k=0.4; dashed
line — solitary wave foro =4, A=15,k=1.

+ ZL};_“ (ujl+l 4un:11 + 6un+l 4un+,1 + u7+21) =0. (26)

The convergence of the numerical solution obtained by scheme (26) to an accurate solution of Eq. (1) depends on
o = f8/Vay. For instance, for o = 0 difference scheme (26) is applicable for t < 2, while for o = 4 the constraint
is more rigorous: t < K.

Numerical modeling of the propagation of a wave specified at £ = 0 by the expression

u(x)=15 cosh™ (x/2) {l — tanh (x/Z)} , (27)

showed that for o = 4 it maintains its shape and propagates with the velocity C = 6. Its profile coincides with the
analytical solution from Table 2 for ¢ = 4, C = 6 within the entire period of calculation. We investigated the
interaction of solitary wave (27) with other disturbances. Figure 1 illustrates the interaction of this wave with a
disturbance that has the form #(x) = 15cosh™ 2 {8(x — 3)} at £ = 0. As is seen, the solitary wave overtakes the
disturbance, interacts with it, and continues to propagate with the same velocity without changing its shape but
with a change in the phase compared to propagation without collision. Thus, solitary wave (27) moves with a
constant velocity without changing its shape and interacts elastically with other disturbances, and consequently it
is a classical soliton.

Thus, Eq. (1) with nonzero «, 3, ¥ has a soliton solution, but it is unique for a given set of parameters o
= fB/Vay since the other disturbance changes with time, its amplitude increases, and for sufficiently large times of
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Fig. 3. Amplitude A and velocity C of the solitary wave as a function of o: a)
A(0); b) C(o).

calculation the disturbance acquires the form (27). However, the process of growth of the amplitude of the solitary
wave does not depend on the interaction.

If, as the initial condition, we take a solitary wave with an amplitude smaller than (27), this wave will grow
with time until its amplitude reaches the amplitude of solitary wave (27) (see Fig. 2a). On the other hand, if at the
initial moment the amplitude of the wave is larger than that of the soliton solution corresponding to the given o,
then this wave will break into parts that over time, some earlier, some later, grow to wave (27).

A similar situation is observed if at the initial moment of time the width of the wave is larger than the
width of the soliton corresponding to the given o. Figure 2b illustrates the evolution, for o = 4, of the solution

u(xy=15 cosh 2 (0.4x/2) {l — tanh (O.4x/2)} ,

This wave also breaks into parts, thus leading to formation of three waves, two of which have the form (27). The
dashed curve represents the exact solution of Eq. (1) for o = 4.

It should be noted that this picture is observed for various o: all waves that exist in the system, transforming
in some way, tend to acquire the shape of the soliton corresponding to the given particular o.

We investigated the behavior of a wave as a function of o. It is turned out that the amplitude of a soliton
increases with o, the velocity of propagation of the wave also increases. Figure 3 shows the amplitude and velocity
of a soliton as a function of o for zero boundary conditions.

To sum up, analytical solutions of Eq. (1) are obtained in form of solitary waves. With the aid of difference
scheme (26) the interaction of a solitary wave with other solutions is investigated. The formation of solitary waves
at different o is considered. Dependences of the amplitude and velocity of a solitary wave on the parameter o are
determined.

The work was carried out with the support of project MNTTs V23-96.

NOTATION

u(x, 1), function characterizing the deviation of the displacement, temperature, concentration, etc. from
equilibrium; a, 8, y, constant coefficients of intensification, dispersion, and dissipation, respectively; o = 8/Vay,
dimensionless combination of them; x, coordinate; ¢, time; u]"’H, value of u at x; = jh, = (n + 1)t; 7, time step;

h, coordinate step.
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